Tính Đơn Điệu Của Hàm Số

Tính Đơn Điệu Của Hàm Số
A. Lý Thuyết: Hàm số đơn điệu: Cho hàm số f xác định trên khoảng K, trong đó K là một khoảng , đoạn hoặc nửa khoảng. * f đồng biến trên K nếu với mọi

* f nghịch biến trên K nếu với mọi

Điều kiện cần để hàm số đơn điệu: Giả sử hàm số f có đạo hàm trên khoảng I. Khi đó : * Nếu hàm số f đồng biến trên khoảng I thì * Nếu hàm số f nghịch biến trên khoảng I thì Điều kiện đủ để hàm số đơn điệu: Định lý 1:Định lý về giá trị trung bình của phép vi phân ( Định lý Lagrange) Nếu hàm số f liên tục trên đoạn [a,b] và có đạo hàm trên khoảng (a,b) thì tồn tại ít nhất một điểm sao cho f(b)-f(a)=f'( c) ( b-a) Định lý 2: với mọi với mọi

1) Giả sử hàm số f có đạo hàm trên khoảng I * Nếu thì hàm số đồng biến trên I. * Nếu và chỉ